A Penalty-Function Approach for Pruning Feedforward Neural Networks

نویسنده

  • Rudy Setiono
چکیده

This article proposes the use of a penalty function for pruning feedforward neural network by weight elimination. The penalty function proposed consists of two terms. The first term is to discourage the use of unnecessary connections, and the second term is to prevent the weights of the connections from taking excessively large values. Simple criteria for eliminating weights from the network are also given. The effectiveness of this penalty function is tested on three well-known problems: the contiguity problem, the parity problems, and the monks problems. The resulting pruned networks obtained for many of these problems have fewer connections than previously reported in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Analysis of Multilayer Feedforward Networks Trained with Penalty Terms: a Review

Gradient descent method is one of the popular methods to train feedforward neural networks. Batch and incremental modes are the two most common methods to practically implement the gradient-based training for such networks. Furthermore, since generalization is an important property and quality criterion of a trained network, pruning algorithms with the addition of regularization terms have been...

متن کامل

Convergence of an Online Gradient Algorithm with Penalty for Two-layer Neural Networks

Online gradient algorithm has been widely used as a learning algorithm for feedforward neural networks training. Penalty is a common and popular method for improving the generalization performance of networks. In this paper, a convergence theorem is proved for the online gradient learning algorithm with penalty, a term proportional to the magnitude of the weights. The monotonicity of the error ...

متن کامل

An iterative pruning algorithm for feedforward neural networks

The problem of determining the proper size of an artificial neural network is recognized to be crucial, especially for its practical implications in such important issues as learning and generalization. One popular approach for tackling this problem is commonly known as pruning and it consists of training a larger than necessary network and then removing unnecessary weights/nodes. In this paper...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

Convergence of Batch BP Algorithm with Penalty for FNN Training

Penalty methods have been commonly used to improve the generalization performance of feedforward neural networks and to control the magnitude of the network weights. Weight boundedness and convergence results are presented for the batch BP algorithm with penalty for training feedforward neural networks with a hidden layer. A key point of the proofs is the monotonicity of the error function with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 1997